射电天文学

更新时间:2022-05-11 16:47

射电天文学是天文学的一个分支,通过电磁波频谱无线电频率研究天体

历史发展

在发现天体会发射无线电波之前,就已经有天体可能也会发射无线电波的想法。在1860年代,詹姆斯·克拉克·麦克斯韦麦克斯韦方程组就已经显示来自恒星的电磁波辐射可以有任何的波长,而不会仅仅是可见光。一些著名科学家和实验者,如爱迪生、奥利弗·洛奇和马克斯·普朗克都预言太阳应该会发射出无线电波。洛奇曾尝试观察太阳的无线电信号,但局限于当时仪器技术的极限而未能成功。.

最早辨识出的天文学无线电波源是偶然发现造成的意外收获。在1930年代的早期,美国贝尔电话公司的一位工程师卡尔·央斯基在使用巨大的定向天线研究越洋无线电话的声音在短波上受到的静电干扰时,他注意到以纸带记录器记下的类比讯号,持续的有着来源不明但会一直重复的讯号。由于这个讯号每天有一个峰值,因此央斯基起初怀疑干扰的来源是太阳。持续的分析显示,来源不随着太阳的出没变化,而是以23小时56分的周期重复著,这个特征显示来源是一个固定在天球上的天体,才会与恒星时同步转动。通过它的观测和与光学天文的星图比对,央斯基认为辐射是来自银河,并且朝向中心星座人马座方向最强。他在1933年公布了这项发现,央斯基本想再进一步的详细研究来自银河的无线电波,但贝尔实验室重新分配了另一项工作给央斯基,使他不能继续在天文学的领域内完成进一步的工作。

1937年,格罗特·雷伯修建了一架9米直径的抛物面碟形无线电望远镜,成为无线电天文学的先驱。他以仪器重做了央斯基早期的工作和一些简单的工作,也进行了第一次的无线电频率巡天。

1940年,雷伯在美国用自制的直径9.45米、频率162兆赫的抛物面型射电望远镜证实了央斯基的发现,并测到了太阳以及其他一些天体发出的无线电波。第二次世界大战中,英国的军用雷达接收到太阳发出的强烈无线电辐射,表明超高频雷达设备适合于接收太阳和其他天体的无线电波。战后,一些雷达科技人员,把雷达技术应用于天文观测,揭开了射电天文学发展的序幕。

在1942年2月27日,英国陆军的研究官员J.S. Hey发现太阳散发出无线电波,开始协助无线电天文学的推展。

在1950年代初期,英国剑桥大学马丁·赖尔安东尼·休伊什使用剑桥干涉仪描绘天空的无线电图,制做了有名的2C和3C无线电源巡天星表。

到了二十世纪七十年代,雷伯首创的那种抛物面型射电望远镜的“后代”,已经发展成现代的大型技术设备。其中名列前茅的如德意志联邦共和国埃费尔斯贝格的射电望远镜,直径达100米,可以工作到短厘米波段。这种大型设备配上各种高灵敏度接收机,便可以在各个波段探测到极其微弱的天体无线电波。

科学发现

六十年代中的四大天文发现:类星体脉冲星星际分子微波背景辐射,都是利用射电天文手段获得的。从前,人类只能看到天体的光学形象,而射电天文则为人们展示出天体的另一侧面——无线电形象。由于无线电波可以穿过光波通不过的尘雾,射电天文观测就能够深入到以往凭光学方法看不到的地方。银河系空间星际尘埃遮蔽的广阔世界,就是在射电天文诞生以后,才第一次为人们所认识。

宇宙微波背景辐射是射电天文学上的一个重要发现,它为大爆炸理论提供了有力的支持。

射电天文望远镜也用来研究离地球近得多的东西,包括太阳活动太阳系行星的表面。

技术应用

学科应用

无线电天文学家使用不同形式的技术在无线电光谱上观测天体。仪器也许只是简单的针对一个能量充沛的无线电源,分析它所发射出来的是何种型态的辐射。图像较详细的天空区域,会有重叠的扫描影像可以被纪录和拼合(马赛克)成单一的影像。使用的仪器种类取决于需要的信号强度和需要的详细的程度。

射电望远镜

哈勃太空望远镜拍摄的星系M87光学影像,使用VLA干涉仪拍到的同一星系,以及使用VLBA获得的中心区域影像,这些天线分别位在美国、德国、意大利、芬兰、瑞典和西班牙。颗粒的喷流被怀疑是由位在星系中心的黑洞提供的动力造成的。

电波望远镜需要如此的大是因为需要接受信号和获得高的信噪比物镜光学望远镜大上许多。例如,一架1米口径的光学望远镜是观测的光波波长的200万倍,解析力是数个弧秒;而一架盘面大上许多倍的电波望远镜,依据他所观测的波长,也许只能分辨满月(30弧分)大小的天体。

射电干涉仪

光学天文观测一般是利用光的粒子性,而射电天文观测技术则是利用光的波动性(无线电波也是光的一种)。射电天文观测往往能记录下电磁波的相位信息,这使得人们可以通过干涉原理,将多台射电望远镜的观测数据进行相干计算,得到更高的分辨率。理论上,射电干涉仪在某一方向上能达到的最佳分辨率取决于该方向上相距最远的两台望远镜的距离。

射电干涉仪的发明意义重大,它的使用,不仅可以使得射电天文观测所能达到的分辨率超过光学天文,也能通过建立射电望远镜阵列来增加观测灵敏度,突破了射电望远镜单镜的口径限制。射电干涉仪的发明者,英国剑桥大学的马丁·赖尔(Martin Ryle,1918-1984)和安东尼·休伊什(Antony Hewish,1924-- 2021)因此获得了1974年诺贝尔物理学奖。这也是诺贝尔物理学奖第一次授予天文学研究。

研究课题

值得注意的是,应用射电天文手段观测到的天体,往往与天文世界中能量的迸发有关:规模最“小”的如太阳上的局部爆发、一些特殊恒星的爆发,较大的如演化到晚期的恒星的爆炸,更大的如星系核的爆发等等,都有强烈的射电反应。而在宇宙能量迸发最剧烈的天体,包括射电星系和类星体,每秒钟发出的无线电能量估计可达太阳全部辐射的一千亿倍乃至百万亿倍以上。这类天体有的包含成双的射电源,有的伸展到周围很远的空间。有些处在核心位置的射电双源,以视超光速的速度相背飞离。这些发现显然对于研究星系的演化具有重大的意义。高能量的河外射电天体,即使处在非常遥远的地方,也可以用现代的射电望远镜观测到。这使得射电天文学探索到的宇宙空间达到过去难以企及的深处。

这一类宇宙无线电波都属于“非热辐射”,有别于光学天文中常见的热辐射(见热辐射和非热辐射)。对于星系和类星体,非热辐射的主要起因,是大量电子以接近于光速的速度在磁场中的运动。许多观测事实都支持这种见解。但是,这些射电天体如何产生并不断释放这样巨大的能量,而这种能量如何激起大量近于光速的电子,则是当前天文学和物理学中需要解决的重大课题。天体无线电波还可能来自其他种类的非热辐射。日冕中等离子体波转化成的等离子体辐射就是一例。而在光学天文中所熟悉的那些辐射,也同样能够在无线电波段中产生。例如,太阳上的电离大气以及银河系的电离氢区所发出的热辐射,都是理论上预计到的。微波背景的2.7K热辐射,虽然是一个惊人的发现,但它的机制却是众所熟知的。

光谱学在现代天文中的决定性作用,促使人们寻求无线电波段的天文谱线。五十年代初期,根据理论计算,测到了银河系空间中性氢21厘米谱线。后来,利用这条谱线进行探测,大大增加了人们对于银河系结构(特别是旋臂结构)和一些河外星系结构的知识。氢谱线以外的许多射电天文谱线是最初没有料到的。1963年测到了星际羟基的微波谱线。六十年代末又陆续发现了氨、水和甲醛星际分子射电谱线。在七十年代,主要依靠毫米波(以及短厘米波)射电天文手段发现的星际分子迅速增加到五十多种,所测到的分子结构愈加复杂,有的链长超过10个原子。这些分子大部分集中在星云中。它们的分布,有的反映了银河系的大尺度结构,有的则与恒星的起源有关。研究这些星际分子,对于探索宇宙空间条件下的化学反应将有深刻影响。

三十多年来,随着观测手段的不断革新,射电天文学在天文领域的各个层次中都作出了重要的贡献。在每个层次中发现的天体射电现象,不仅是光学天文的补充,而且常常越出原来的想象,开辟新的研究领域。

相关学科

天文学、光学天文学红外天文学X射线天文学恒星天文学空间天文学天体物理学恒星物理学太阳物理学行星物理学天体力学天体动力学宇宙学宇宙化学、大爆炸宇宙学、天体测量学实用天文学天体演化学天文史学考古天文学

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}